

Preparation and Standardization of Polyherbomineral Formulation

Gupta Reena^{*1}

Gupta Mahesh Kumar²

Bhandari Anil¹

Gupta Jitendra.3

Pathan Imran.1

¹¹Faculty of Pharmaceutical Sciences, Jodhpur National University, Jhanwar Road, Narnadi- 342014, Jodhpur, Rajasthan, India ²Kota College of Pharmacy, Kota-324010, Rajasthan ³Institute of Pharmaceutical Research, GLA University, Chaumuha-281406, Mathura, Uttar Pradesh, India.

Abstract:

Standardization of herbal formulation is essential in order to assess the quality of drugs. The present paper reports preparation and standardization of a herbomineral formulation which contains *Zingiber officinalis* (rhizome), *Piper longum* (fruit), *Piper nigrum* (fruit), *Emblica officinalis* (fruit, seed), *Terminalia chebula* (mature fruit), *Terminalia belerica* (pericarp of ripe fruit), *Piper retrofractum* (stem), *Coriander sativum* (fruit), *Cuminum cyminum* (fruit), Mercury, sulphur, loh bhasam, abharak bhasam. This Ayurvedic formulation is used to treat cold and cough. Here we discussed and focused about Morphology, Microscopy, Total ash, Acid insoluble ash, Water soluble and Alcohol soluble extractive value, bulk density, tapped density, Carr's index, Hausner ratio, phytochemical tests, and Thin layer chromatography (TLC) etc. These parameters are required for authentication of any herbal drug and its Herbo-mineral formulation.

Keywords: Standardization, Extractive value, Carr's index, Herbo-mineral.

Corresponding Authors: Email: rspg80@gmail.com

ntroduction

Page

In the present era, market of all commodities has become global. Health has been of utmost importance since ancient times for the mankind. Market of health-related products has been active and these products are manufactured at different parts of the world and sold all over. Standardization is necessary to make sure the availability of a uniform product in all parts of the world (1). Standardization assures a consistently stronger product with guaranteed constituents. WHO collaborates and assists health ministries in establishing mechanisms for the introduction of traditional plant medicines into primary healthcare programs, in assessing safety and efficacy, in ensuring adequate supplies, and in the quality control of raw and processed materials (2). The present paper reports the preparation and standardization of herbomineral formulation based on organoleptic characters, physical characteristics, and physicochemical properties.

Materials and Methods

Plant materials were collected from local market of Mathura, U.P. The authenticity of the species of all the herbs was checked and confirmed from Botany department, BSA, College, Mathura, U.P., India.

Preparation of Herbomineral formulation:

The formulation was prepared as per the procedure of Ayurvedic Sarsangrah (3). All the ingredients were powdered separately, passed through 80# sieve, and then mixed together in specified proportions to get uniformly blended herbomineral formulation.

Marketed Sample

Marketed sample of formulation and the LPH formulation were standardized based on their

Macroscopy of Herbomineral formulation:

The colour, odour and taste of all herbal drugs and formulation were determined.

Microscopy of Herbomineral formulation:

About 2 g of herbs and lab prepared herbomineral (LPH) formulation was taken and thoroughly cleaned with chloral hydrate as a clearing agent and then microscopic study (4,5,6,7,8) was done by staining the powder mixture with phloroglucinol, iodine solution and sudan red etc.

Physicochemical studies:

Physicochemical studies like total ash, acid insoluble ash, water soluble and alcohol soluble extractive values were carried out as per the WHO guidelines (4, 5, 6, 7, 9) for individual herbs, LPH formulation and marketed formulation.

Evaluation of micromeritics characteristics:

Various micromeritics characteristics like bulk density, tapped density, Carr's index and hausner's ratio were carried out as per the standard methods (10,11).

Preliminary Phytochemical screening:

The active phytochemical constituents like carbohydrates, alkaloids, steroids, and saponins were identified in aqueous and alcoholic extract of herbs; LPH and marketed formulation (5,12,13,14,15).

Thin layer chromatography:

Identification of compound of Herbo-mineral formulation by TLC

About 10µl of the sample was spotted on precoated Silica gel-G aluminium plates of uniform thickness of 0.5mm as a stationary phase. Thin layer chromatograms were developed by using a mixture of different solvents as a mobile phase. The development was stopped when the solvent front had advanced about 7.5 cm. After drying plates in air, for some time, lodine chamber and Dragondroff's reagent was used as a detecting agent for the detection of compound. Compound present in the LPH formulation were identified by comparison with the spot of the reference standard (4,5,6,7,8,12).

Result and Discussion

LPH formulation was evaluated as per the WHO guidelines. Pharmacognostical parameters revealed that the LPH formulation was blackish brown in color with Fragrant, Aromatic, and taste was spicy, slightly saline (table 1). Microscopical studies showed the presence of sclereids, rosettes calcium oxalate, stone cells, starch grains, fixed oil glands (table 2a,2b). It also showed the presence of stone cells with brownish matter, calcium oxalate crystals, starch grain and aleurone grains (Fig. 1). Physico-chemical parameters of LPH formulation were tabulated in table 3. Total Ash value of plant material indicated the amount of minerals, and earthy materials present in the plant material. Analytical results showed the Total Ash value was 32.93% w/w. The amount of acidinsoluble siliceous matter present in the plant was 1.1% w/w. The water-soluble extractive value indicated the presence of sugar, acids, and inorganic compounds. The alcohol soluble extractive values indicated the presence of polar constituents. Micromeritics characteristics of LPH formulation were tabulated in table 4. The flow ability of the LPH formulation was found to be passable at carrr' index was found to be 24.4898±0.81, which was further confirmed by high value of Hausner ratio. The results obtained from phytochemical that screening reveals phytoconstituents like carbohydrate, alkaloids,

12

Page

Covered in Scopus & Embase, Elsevier

Int. J. Drug Dev. & Res., April - June 2014, 6 (2): 211-219

proteins, Steroids, and sapposins in LPH formulation (Table 5,6). TLC profile of herbs, LPH formulation and marketed formulation was developed. Thin layer chromatography (Table 7) showed different spots (Fig. 2) that indicate the presence of different herbs in LPH formulation.

Conclusion

Page 213

The present study involved the preparation and standardization of polyherbo-mineral formulation. We had done pharmacognostic study of polyherbo-mineral formulation. We had studied various morphology, microscopy, total ash, acid insoluble ash, ater soluble and alcohol soluble extractive value, bulk density, tapped density, carr's index, hausner ratio, phytochemical tests and TLC. In Thin layer chromatographic studies, Rf value of herbs are more close to Rf value LPH formulation, marketed formulation and standards. This suggested that a precoated TLC plate gives perfect and close results which can be repeated in next future.

These parameters are required for authentication of any herbal drug and its Herbo-mineral formulation and also helpful in standardization and development of the quality control protocol of Herbomineral formulation.

Acknowledgement

Authors are thankful to Prof. Ashok Kumar Agrawal, Head of department of Botany, BSA College, Mathura, U.P., India for help.

Table 1: Macroscopy of Herbs, LPH formulation and Marketed formulation

Ingredients	Colour	Odour	Taste
Zingiber officinalis (Ginger)	Buff	Agreeable, Aromatic	Agreeable, Aromatic
Piper longum (Pipali)	Greenish black –Black	Aromatic	Pungent
Piper nigrum (Kali mirch)	Greyish black – Black	Aromatic	Pungent
Emblica officinalis (Amla)	Grey – Black	-	Sour ,Astringent
Terminalia chebula (Hare)	Yellowish brown	-	Astringent
Terminalia belerica (Bahera)	Whitish shine,Grey –greyish brown	-	Astringent
Piper retrofractum (Chavya)	Greyish brown	Peppery	Acrid
<i>Coriander sativum</i> (Coriander)	Fawn –Brown	Aromatic	Spicy, Characteristic
Cuminum cyminum (Jeera)	Greenish brown	Aromatic, Characteristic	Spicy
Mercury	Silver	-	-
Sulphur	Greenish yellow	-	-
Loh Bhasma	Dark Brown	-	-
Abharak Bhasma	Brown	-	-
LPH Formulation	Blackish brown	Fragrant , Aromatic	Spicy, Slightly saline
Marketed Formulation	Blackish Brown	Fragrant , Aromatic	Spicy, Slightly saline

Table 2a: Preliminary microscopy of Herbs

Slide description	Observation	Inferences
Powdered drug + Chloral hydrate + Heated and mounted with glycerin	Calcium oxalate crystals	Calcium oxalate crystals
Powdered drug + Chloral hydrate + Phloroglucinol mounted with glycerin	Brownish Structure	Stone cells
Powdered drug + Chloral hydrate + Iodine solution mounted with glycerin	Violet colour Grains	Starch grains
Powdered drug + Chloral hydrate + Phloroglucinol + Picric acid 1%	Greenish yellow grains	Aleurone grains

Covered in Scopus & Embase, Elsevier

Herbs	Standard	Observed
Zingiber officinalis (Ginger)	Flattened Starch grains(Oblong to Sub rectangular to oval), Fibers associated with vessels	Starch Grains (Flattened, Oval to Sub rectangular)
Piper longum (Pipali)	Starch grains (3-8 μm), Stone cells (Oval to Elongated)	Starch grains (3-8 μm), Stone cells (Oval to Elongated)
Piper nigrum (Kali mirch)	Slightly Elongated Stone cells , Starch grains	Slightly Elongated Stone cells , Starch grains
Emblica officinalis (Amla)	Irregular Silica crystals , Stone cells	Irregular Silica crystal Aggregates, Stone cells with Starch grains
Terminalia chebula (Hare)	Group of Sclereids, Fibers , Vessels	Sclereids
<i>Terminalia belerica</i> (Bahera)	, Rosettes Shaped Calcium oxalate crystals Stone cells in Parancymatous cells	Rosettes Calcium oxalate, Stone cell
Piper retrofractum (Chavya)	Round to Oval Starch grains, Vessels , Fibers	Round to Oval Starch grains
<i>Coriander sativum</i> (Coriander)	Prismatic Calcium oxalate crystals, Fixed oil glands	Prismatic Calcium oxalate crystals, Fixed oil glands
Cuminum cyminum (Jeera)	Fixed oil glands, Short , Bristle Hairs	Fixed oil glands
LPH Formulation	-	Sclereids, Rosettes Calcium oxalate, Stone cells, Starch grains, Fixed oil glands
Marketed formulation	-	Rosettes Calcium oxalate, Stone cells, Starch grains, Fixed oil glands, Fibers, vessels

 Table 3: Total ash, Acid insoluble ash, Water soluble extractive value and Alcohol soluble extractive value of different herbs, LPH formulation and Marketed formulation.

Ingredients	Total Ash (%)	Acid Insoluble Ash (%)	Water Soluble Extractive Value(%)	Alcohol Soluble Extractive Value(%)
Zingiber officinalis (Ginger)	2.49	0.3	19.6	12
Piper longum (Pipali)	3.15	0.8	11.2	18
Piper nigrum (Kali mirch)	2.58	0.9	24.7	22
Emblica officinalis (Amla)	4.06	0.5	57.9	59
Terminalia chebula (Hare)	3.47	0.9	73.0	63
Terminalia belerica (Bahera)	4.64	0.9	60.7	15.67
Piper retrofractum (Chavya)	8.05	0.8	18.88	9.3
Coriander sativum (Coriander)	4.34	0.9	33.56	19.0
Cuminum cyminum (Jeera)	5.62	0.2	39.12	18.56
LPH Formulation	32.93	1.1	36.7	21.3
Marketed Formulation	34.18	1.5	30.2	18.9

 Table 4: Micromeritics properties of Herbomineral formulation

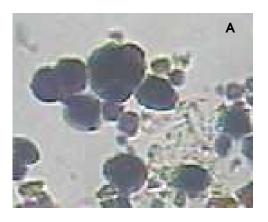
Formulation	Bulk Density [#] (g/ml)	Tapped Density [#] (g/ml)	Hausner Ratio#	Carr's Index#
LPH Formulation	0.625±0.0018	0.827±0.007	1.324324±0.014	24.4898±0.81

#N=3±S.D.

Covered in Scopus & Embase, Elsevier

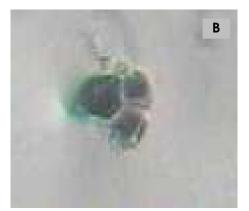
Table 5: Chemical tests of Herbs

Herbs	Tests Reagent	Observations
Zingiber officinalis (Ginger)	Boil with 5% KOH	Pungency Destroyed
Piper longum (Pipali)	10% NaOH	Brown Colour
Piper nigrum (Kali mirch)	5% lodine	Black Colour
Emblica officinalis (Amla)	Ferric chloride	Bluish Black Colour
Terminalia chebula (Hare)	Ferric chloride	Bluish Black Colour
Terminalia belerica (Bahera)	Ferric chloride 50%HNO3	Brownish Green Brick Red Colour
Piper retrofractum (Chavya)	5% lodine	Black Colour
Coriander sativum (Coriander)	5% FeCl₃	No Change in Colour
Cuminum cyminum (Jeera)	Alcoholic Solution of Sudan III	Red Colour

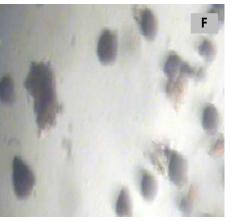

Table 6: Phytochemical test of LPH formulation and Marketed formulation

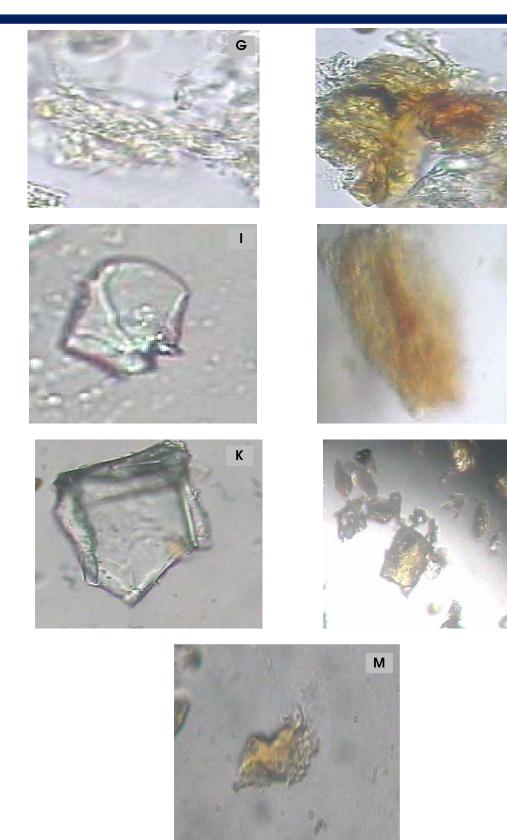
	Test	Reagents	Observation	Sign (LPH Formulation)	Sign (Marketed Formulation)
Test for	carbohydrates				
a. Ma	olish test	Alcoholic a- naphthol+ Sulphuric acid	Purple to violet colour rings	+	+
b. Sel	livanoff's tests	Selivanoff's reagents	Rose colour(keton)	+	+
c. Ba	rfoed's tests	Barfoed reagents	Red colour (monosaccharide) after 10 min.colour form(disaccharide)	+	+
Test for Alk	aloids				
a. Ma	ayer's test	Potassium mercuric iodide solution	Cream precipitate	+	+
b. Dro	agondroff's test	Potassium bismuth iodide solution	Raddish brown precipitate	+	+
c. Wa	agner's tests	lodine potassium solution	Brown precipitate	+	+
d. Ho	iger's tests	Saturated solution of picric acid	Yellow colour	+	+
Test for Prot	teins				
a. Ninhy	ydrine tests	Ninhydrin solution	Violet colour	+	+
b. Millor	n's tests	Millon reagents	White precipitate	+	+
Test for Ster	roids				-
a. Sa	lkowaski test	Chloroform and Conc. H2SO4	Chloroform layer -Red colour Acid layer - Greenish yellow fluorescence	+	+
	berman rchardt tests	Chloroform, acetic anhydride and Conc. H2SO4	reddish ring	+	+
Test for Sap	oonin				
a. Fo	am test	Water	Foam persists for 10 min	+	+

Table 7: Thin Layer Chromatography of Herbs, LPH Formulation and Marketed formulation and their R_{f} value


Covered in Scopus & Embase, Elsevier Int. J. Drug Dev. & Res., April - June 2014, 6 (2): 211-219 © 2014 Gupta Reena et al, publisher and licensee IYPF. This is an Open Access article which permits unrestricted noncommercial use, provided the original work is properly cited.

Herbs/Compound Mobile Phase		R _f of LPH Formulation	R _f of Marketed Formulation
Hexane: Diethyl ether (2:3)	0.59	0.58	0.61
Toluene: Ethyl acetate (9:1)	0.35	0.32	0.34
Toluene: Ethyl acetate (7:3)	0.48	0.48	0.47
Toluene: Ethyl acetate (93:7)	0.39	0.42	0.40
n-propanol: Ethyl acetate: Water: Glacial acetic acid (40:40:20:1)	0.63	0.64	0.63
n-propanol: Ethyl acetate: Water: Glacial acetic acid (40:40:20:1)	0.78	0.79	0.79
Pet. Ether: Benzene (2:11)	0.82	0.8	0.81
Toluene: Ethyl acetate (9.3:0.7)	0.27	0.29	0.32
Toluene: Ethyl acetate (9.3:0.7)	0.29	0.3	0.28
	Hexane: Diethyl ether (2:3) Toluene: Ethyl acetate (9:1) Toluene: Ethyl acetate (7:3) Toluene: Ethyl acetate (93:7) n-propanol: Ethyl acetate: Water: Glacial acetic acid (40:40:20:1) n-propanol: Ethyl acetate: Water: Glacial acetic acid (40:40:20:1) Pet. Ether: Benzene (2:11) Toluene: Ethyl acetate (9.3:0.7)	IngredientsHexane: Diethyl ether (2:3)0.59Toluene: Ethyl acetate (9:1)0.35Toluene: Ethyl acetate (7:3)0.48Toluene: Ethyl acetate (93:7)0.39n-propanol: Ethyl acetate: Water: Glacial acetic acid (40:40:20:1)0.63n-propanol: Ethyl acetate: Water: Glacial acetic acid (40:40:20:1)0.78Pet. Ether: Benzene (2:11)0.82Toluene: Ethyl acetate (9.3:0.7)0.27	Mobile PhaseIngredientsFormulationHexane: Diethyl ether (2:3)0.590.58Toluene: Ethyl acetate (9:1)0.350.32Toluene: Ethyl acetate (7:3)0.480.48Toluene: Ethyl acetate (93:7)0.390.42n-propanol: Ethyl acetate: Water: Glacial acetic acid (40:40:20:1)0.630.64n-propanol: Ethyl acetate: Water: Glacial acetic acid (40:40:20:1)0.780.79Pet. Ether: Benzene (2:11)0.820.8Toluene: Ethyl acetate (9.3:0.7)0.270.29





Covered in Scopus & Embase, ElsevierInt. J. Drug Dev. & Res., April - June 2014, 6 (2): 211-219© 2014 Gupta Reena et al, publisher and licensee IYPF. This is an Open Access article which permits unrestricted noncommercial use, provided the original work is properly cited.

Page 217

Figure 1: A-Oval (Flattened) starch grains of Zingiber officinalis; B-Subrectangular starch grains of Zingiber officinalis; C- Starch grains (Oval) & Stone cells of Piper longum; D- Starch grains (Elongated) & Stone cells of Piper nigrum; E- Group of sclereids of Terminalia chebula; F- Round to Oval starch grains of Piper retrofractum; G- Irregular Silica crystal aggregates of Emblica officinalis; H- Stone cells with Starch grains of Emblica officinalis; I- Rosettes Calcium oxalate of Terminalia belerica; J- Stone cell of Terminalia belerica; K- Prism shape Calcium oxalate crystals of Coriander sativum; L- Oil glands of Coriander sativum; M- Oil glands of Cuminum cyminum.

J

Figure 3: Thin Layer Chromatography of Herbs, LPH formulation and Marketed standard

II Length Original Research Paper

References

- Mukharjee P K. Quality control of herbal drugs: an approach to evaluation of botanicals. ed 3, Business Horizons Pharmaceutical Publishers, 2008, pp 183-219.
- Ekka N R, Nmedo K P, Samal P K. Standardization strategies for herbal drugs. Res J Pharm and Tech 2008; 1: 310-312.
- Ayurvedic Sarsangrah, ed 10, Shri Baidhyanath Ayurveda Bhavan Itd., 2001, pp 306, 387.
- Ayurvedic Pharmacopoeia of India, Part –I, Vol-I, Govt. of India, Ministry of Health and Family Welfare, Controller of Publications, Delhi, pp 4, 26-27, 31-33, 47-48, 53-54, 103.
- Ayurvedic Pharmacopoeia of India, Part -I, Vol-II, Govt. of India, Ministry of Health and Family Welfare, Controller of Publications, Delhi, pp 29-30, 133.
- Ayurvedic Pharmacopoeia of India, Part -I, Vol-III, Govt. of India, Ministry of Health and Family Welfare, Controller of Publications, Delhi, pp 43-44, 115.
- Standardisation of Single drugs of Unani Medicine,Part I, Pub. By: Central Council For Research in Unani Medicine,Ministry of Health and Family Welfare, Govt of India, New Delhi, pp 62, 85-88.
- Khandelwal KR. Practical Pharmacognosy: Techniques and Experiments. ed 14, Nirali Prakashan Pune, 2005, pp 21-25.
- Ananymous. Quality Control Methods for Medicinal Plant Materials, World Health Organisation, Geneva, 1998, pp 25-28.
- Lachman L, Libberman H A, Kangi J L. The theory and practice of Industrial pharmacy.

ed 2, Verghese publishing house Mumbai,, 1976, pp 183.

- Aulton ME. Pharmaceutics, The science of dosage forms design. ed 2, Churchill Livingstone New Delhi, 2002, pp 205-21.
- 12) Standardisation of Single drugs of Unani Medicine,Part III, Pub. By: Central Council For Research in Unani Medicine,Ministry of Health and Family Welfare, Govt of India, New Delhi, pp 24, 85-88, 147-151, 152-157, 189
- Khandelwal K R. Practical Pharmacognosy: Techniques and Experiments. ed 14, Nirali Prakashan Pune, 2005, pp 149-155.
- 14) Kokate C K, Purohit A P, Gokhale S B.
 Pharmacognosy, ed 12, Nirali Prakashan,
 Pune, 1999, pp 181,213, 216, 224, 279, 315,
 322, 390, 425-427, 593-597.
- 15) Harborne J B. Phytochemical Methods. Jackman H. (Ed.), London, 1973, pp 70.

Article History: ------Date of Submission: 25-05-2014 Date of Acceptance: 29-05-2014 Conflict of Interest: NIL Source of Support: NONE

Int. J. Drug Dev. & Res., April - June 2014, 6 (2): 211-219