Periodic table as a Binary table for Drug Encryption

M. Yamuna*

K. Karthika

SAS, VIT University, Vellore, Tamilnadu, India, 632014.

Corresponding Authors:

M. Yamuna
myamuna@vit.ac.in

Abstract

: Modern living styles and change is food habits have lead to new diseases and this number is getting multiplied. Research regarding finding medicines for these diseases is in active process and new drugs get released in market frequent. In developing these new drugs communicating details of these findings cannot be avoided. Any drug is best represented using its molecular formula. In this paper we have developed a new binary periodic table and hence use this for encrypting details about any drug.

Keywords: periodic table, molecular formula, binary string, encryption.

Introduction

In cryptography, encryption is the process of encoding messages or information in such a way that only authorized parties can read it. Encryption doesn't prevent hacking but it reduces the likelihood that the hacker will be able to read the data that is encrypted. In an encryption scheme, the message or information, referred to as plaintext, is encrypted using an encryption algorithm, turning it into an unreadable ciphertext. This is usually done with the use of an encryption key, which specifies how the message is to be encoded. Any adversary that can see the ciphertext should not be able to determine anything about the original message. An authorized party, however, is able to decode the ciphertext using a decryption algorithm, that usually requires a secret decryption key, that adversaries do not have access to. For technical reasons, an encryption scheme usually needs a key - generation algorithm to randomly produce keys (1).

The periodic table of the chemical elements is a table that displays all known chemical elements in a systematic way. The elements in the periodic table are ordered by their atomic number (Z) and are arranged in periods (horizontal rows) and groups (vertical columns). The layout of the periodic table is designed to illustrate periodic trends, similarities and differences in the properties of the elements (2).

Table 1

Insertion Method

In (3), H.J. Shiu et al introduced the insertion method, which is wide use now. A snapshot (3) of insertion method is given below.

Method 1: The Insertion Method

To simplify the discussion, the most basic version is outlined and a simple example is given. The more complicated version of the method will be presented after the basic one is explained. All of the methods use a reference sequence s suppose the secret message M is 01001100 . Let S be ACGGTTCCAATGC. The method works as follows:

Step 1: Code S into a binary sequence by using the binary coding rule. Thus the sequence s will now become 00011010111101010000111001.

Step 2: Divide S into segments, whereby each segment contains k bits. Suppose k is 3 . Then there are the following segments: 0000,110, 101, 111,010, 100,001, 110,01.
Step 3: Inserts bits from M, one at a time, into the beginning of segments of S. The result is as follows: 000, 1110, 0101, $0111,1010,1100$, 0001, 0110, 01. Those segments without any secret message inserted should be ignored. Thus, there are the following binary sequence: 00001110010101111010110000010110.

Step 4: Use the inverse function of the binary coding rule to produce the following faked DNA sequence: $S^{\prime}=A A T G C C C T G G T A A C C G$. As the reader can see, this sequence is quite different from S .

Step 5: Send the above sequence S^{\prime} to the receiver.
numeral system, or base - 2 numeral system, which represents numeric values using two different symbols: typically 0 (zero) and 1 (one). More specifically, the usual base - $\underline{2}$ system is a positional notation with a radix of 2 . Because of its straightforward implementation in digital electronic circuitry using logic gates, the binary system is used internally by almost all modern computers and computer-based devices such as mobile phones (4).
Replace each atomic number into binary representation.

Results and Discussion

In this section we have provide a construction of binary table and hence use it for encrypting details about any exiting drug or any new finding.

Construction of Binary Periodic Table

We can use any one of the values either atomic number or atomic weight of the chemical elements for binary conversion. We shall construc \dagger a table based on the chemical element's atomic numbers. Using the usual periodic table 1 as the base table we generate the following binary table.

Binary Conversion

In mathematics and digital electronics, a binary number is a number expressed in the binary

Table 2
Converting Molecular Formula to Binary String
Any molecular formula is a combination of chemical elements and numbers. We use this molecular formula for generating a binary string of the drug. A numerical value in the chemical formula represents the number of times the chemical element occurs in the drug. We replace the numbers by the original chemical elements itself. For example $\mathrm{Na}_{3} \mathrm{Cl}_{2}$ is replaced by NaNaNaClCl . Then we replace each elements by its corresponding 8 bit code. In the above example from Table 2 Na is replaced by 111111 and Cl by 171717 to obtain the binary string 0000101100001011000010110001000100010001.

Encryption algorithm

Step 1: Let S be the molecular formula for any drug.
Step 2: Convert S into S_{1} as explained in section3.2

Step 3: Replace each chemical element by its corresponding binary string S_{2} using Table 2.

Step 4: Obtain a new binary string S_{3} using the insertion method explained in section 2.1.
Step 5: Send S_{3} to the receiver.
By reversing the procedure we can decrypt the binary string into its corresponding chemical formula for the particular drug.

Example:

Consider a random binary string M:

00000111011011010111010101011010000001110001 10011000001111101010101100001011111100000011 01010100100110110111000010000001111011011000 11110110101000000110101011011010101010101000 001110000011011110111000000001111000000000.

Consider a chemical formula of Aciclovir: $\mathrm{C}_{8} \mathrm{H}_{1} \mathrm{~N}_{5} \mathrm{O}_{3}$ to be encoded. Rewrite the chemical formula as follows
s: CCCCCCCCHHHHHHHHHHHNNNNNOOO
Convert each chemical element into its corresponding atomic numbers.
S1: 6666661111111111177777888
By using Table 2 convert S1 into S2
S2:
0000011000000110000001100000011000000110 0000011000000110000001100000000100000001 0000000100000001000000010000000100000001 0000000100000001000000010000000100000111 0000011100000111000001110000011100001000 0000100000001000

We now use the insertion method to insert string S2 into M. We divide M into segments of length $k=1$ and insert S2.

00000000001111100010100010110110001010100011 01100010001010011100000000000011111000000010 10010110100000000001111010101000100111001000 10100000000110001010101010110000000000001011

00100010001000110000001010001011010101000000 00011000000000000101110100010100010110000001 0101010011010001000100001000000001010001 0001010011111001000100011011001000100001010 1001010100001010100101000101111100101010010 00000000000001110101000000000010000000.

Note that the red color numbers represents the original one.
So the given drug can be encrypted as follows and send S 3 to the receiver
s3:
00000000001111100010100010110110001010100011 0110001000101001110000000000001111100000010 1001011010000000000111010101000100110000 10100000000110001010101010110000000000001011 00100010001000110000001010001011010101000000 00011000000000000101110100010100010110000001 01010100110100010001000010000000010100011001 00010100111110010001000110111001000100001010 1001010100001010100101000101111100101010010 00000000000001110101000000000010000000.

Suppose the received message is
10000010101111101010101010010100000000000001 011010100000000111000001000001111010001000 100111000000101000110110000010001011111000 0000001111101010001000110110000010101001110 10101010100000010000000000000001000010101010 10110010000010000011001000001000100110100010 10101001000010000010000110101010101000010000 10101010000110100000100000011000101010000001 10001000100010010010101010101001000010001010 0001001000000010000110000010000110110100000 1100001000001000011010100
Collect only red color numbers alone 00000110000001100000011000000110000001100000 01100000011000000110000001100000011000000110 00000001000000010000000100000001000000010000

00010000000100000001000000010000000100000001 0000000100000001000000010000000100000110000 100000001000
Split the binary string into 8 bit string 000001100000011000000110000001100000010
 0000011000000001000000010000000100000001 0000000100000001000000010000000100000001 0000000100000001000000010000000100000001 00000001000001110000100000001000
By using Table 2 convert each bit into atomic numbers.
66666666666111111111111111788 Again by using Table 2, convert atomic numbers into its corresponding chemical elements CCCCCCCCCCCHHHHHHHHHHHHHHHNOO Obtain the required chemical formula C11H15NO2
From this we can obtain the original chemical formula for MDMA (3,4-methylenedioxy- N methylamphetamine.

Conclusion

A binary string can be of any length and numerous binary strings are available in public domain. So it is difficult to find the difference between a fake binary string and the encrypted one. We have used insertion method. So all the advantages of encrypting a message using this method applies here also. Moreover since each chemical element is converted into a binary string, it is difficult for anyone to guess this as a chemical formula since a periodic table using binary string is not in use.

References

1) http://en.wikipedia.org/wiki/Encryption.
2) http://www.webqc.org/periodictable.php
3) Shiu H.J, Ng K.L, Fang J.F, Lee R.C.T, Huang C.H.

Data hiding methods based upon DNA
sequences, Information Sciences 2010; 180: 2196

- 2208.

4) http://en.wikipedia.org/wiki/Binary_number.

Article History:

Date of Submission: 03-04-2014
Date of Acceptance: 09-06-2014
Conflict of Interest: NIL
Source of Support: NONE

Powered by

