DEVELOPMENT, CHARACTERIZATION AND SOLUBILITY STUDY OF SOLID DISPERSION OF CEFIXIME TRIHYDRATE BY SOLVENT EVAPORATION METHOD

S.C. ARORA*, P.K. SHARMA, RAGHUVEER IRCHHAIIYA, ANURAG Khatkar, NEERAJ SINGH AND JAGBIR GAGORIA

1 R.K.S.D. College of Pharmacy, Kaithal, Haryana, India
2 Dept. of Pharmaceutical Technology, MIET, Meerut, Uttar Pradesh, India
3 Institute of Pharmacy, Bundelkand University, Jhansi, Uttar Pradesh, India

ABSTRACT

Cefixime Trihydrate (Poorly water soluble drug), when prepared as solid dispersion showed improved solubility and dissolution. So the main purpose of this investigation was to increase the solubility and dissolution rate of Cefixime Trihydrate by the preparation of its solid dispersion with urea using solvent evaporation method. Physical mixtures and solid dispersions of Cefixime Trihydrate were prepared by using urea as water-soluble carrier in various proportions (1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7 by weight), by employing solvent evaporation method. The drug release profile was studied and it was found that the dissolution rate and the dissolution parameters of the drug from the physical mixture as well as solid dispersion were higher than those of the intact drug. FT-IR spectra revealed no chemical incompatibility between drug and urea. Drug-polymer interactions were investigated using differential scanning calorimetry (DSC) and Powder X-Ray Diffraction (PXRD).

KEYWORDS: Cefixime Trihydrate; Urea; Solvent Evaporation Method; Solid dispersion.

INTRODUCTION

Cefixime Trihydrate ([(6R,7R)-7-[2-(2-Amino-4-thia-zolyl)glyoxylamido]-8-oxo-3-vinyl-5-thia-1-azabicyclo[4.2.0] oct-2-ene-2-carboxylic acid, 72-(Z)-[O-(carboxymethyl) oxime] trihydrate) (Figure 1). Molecular weight = 507.50 as the trihydrate. Chemical Formula is C16H15N5O7S2•3H2O. It is used to treat or prevent infections that are proven or strongly suspected to be caused by bacteria. One of the major problems with this drug is its very poor solubility in biological fluids that results into poor bioavailability after oral administration. It shows erratic dissolution problem in gastric and intestinal fluid due to its poor water solubility. Rate of absorption and/or extent of bioavailability for such insoluble drugs are controlled by rate of dissolution in gastrointestinal fluids (1). The peak plasma concentration (Cmax) and the time taken to reach Cmax (tmax) depend upon extent and rate of dissolution of drug respectively. The effort to improve the dissolution and solubility of a poorly water-soluble drug remains one of the most challenging tasks in drug development. Several methods have been introduced to overcome this problem like solid dispersions, complexation, Zydis technology, and by the use of hydrophilic carriers.

Solid dispersion, which was introduced in the early 1970s (2), refers to a group of solid products consisting of at least two different components, generally a hydrophilic matrix and a hydrophobic drug. The matrix can be either crystalline or amorphous. The drug can be dispersed molecularly, in amorphous particles (clusters) or in
crystalline particles. Solid dispersion technique has been used for a wide variety of poorly soluble drugs such as nimesulide, ketoprofen, tenoxicam, nifedipine, nimodipine, ursodeoxycholic acid, and albendazole. Various hydrophilic carriers, such as polyethylene glycols, polyvinylpyrrolidone, hydroxypropyl methylcellulose, gums, sugar, mannitol, and urea, have been investigated for improvement of dissolution characteristics and bioavailability of poorly aqueous soluble drugs.

Solid dispersion can be prepared by various methods such as solvent evaporation and melting method. Solid dispersion technique has been extensively used to increase the solubility of a poorly water-soluble drug. According to this method, a drug is thoroughly dispersed in a water-soluble carrier by suitable method of preparation. The mechanism by which the solubility and the dissolution rate of the drug are increased includes: reduction of the particle size of drug to submicron size or to molecular size in the case where solid solution is obtained. The particle size reduction generally increases the rate of dissolution; secondly, the drug is changed from amorphous to crystalline form, the high energetic state which is highly soluble; finally, the wettability of the drug particle is improved by the hydrophilic carrier. Cefixime Trihydrate-urea systems, prepared by solvent evaporation method, showed an improvement in dissolution rates of the drug from the solid dispersions as compared with the pure drug and physical mixtures. This study presents formulation of solid dispersions of Cefixime Trihydrate with urea as the hydrophilic carrier.

MATERIALS AND METHODS

Materials

Cefixime Trihydrate was obtained as generous gift from FDC Limited, Mumbai. Urea (Analytical grade) was purchased from Qualikems Fine Chemicals Pvt. Ltd., New Delhi. All other chemical reagents were of analytical grade.

Methods

Preparation of Physical Mixture

Accurately weighed amount of Cefixime Trihydrate and urea (carrier) in various drug-to-carrier weight ratios were thoroughly blended in glass mortar for 5 min. The composition of various batches is shown in Table 1. The products were kept in desiccator for further study.

Preparation of Solid Dispersion

The solid dispersions of Cefixime Trihydrate and urea (carrier) in various drug-to-carrier weight ratios were prepared by solvent evaporation method. The 100 mg of Cefixime Trihydrate was dissolved in 20 ml of methanol in a beaker and carrier was added and mixed to dissolve at 40°C on a hot plate to get a clear solution. Then the solvent was allowed to evaporate in hot air oven at 40°C ± 5°C. The process of evaporation was opted until the constant weight was obtained. Solid Dispersions prepared were crushed, pulverized and sifted through mesh number 80 and stored in desiccators.

<p>| Table 1: Composition of Batches Containing Cefixime Trihydrate and Urea |</p>
<table>
<thead>
<tr>
<th>Batches for Physical Mixture</th>
<th>Cefixime Trihydrate (mg)</th>
<th>Urea (mg)</th>
<th>Drug : Carrier Ratio</th>
<th>Batches for Solid dispersion</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM1</td>
<td>100</td>
<td>100</td>
<td>1:1</td>
<td>SD1</td>
</tr>
<tr>
<td>PM2</td>
<td>100</td>
<td>200</td>
<td>1:2</td>
<td>SD2</td>
</tr>
<tr>
<td>PM3</td>
<td>100</td>
<td>300</td>
<td>1:3</td>
<td>SD3</td>
</tr>
<tr>
<td>PM4</td>
<td>100</td>
<td>400</td>
<td>1:4</td>
<td>SD4</td>
</tr>
<tr>
<td>PM5</td>
<td>100</td>
<td>500</td>
<td>1:5</td>
<td>SD5</td>
</tr>
<tr>
<td>PM6</td>
<td>100</td>
<td>600</td>
<td>1:6</td>
<td>SD6</td>
</tr>
<tr>
<td>PM7</td>
<td>100</td>
<td>700</td>
<td>1:7</td>
<td>SD7</td>
</tr>
</tbody>
</table>

Estimation of Cefixime Trihydrate

Cefixime Trihydrate was estimated at 230 nm using UV spectrophotometer (Systronics Double Beam Spectrophotometer 2202). Standard curve for the estimation was prepared in phosphate buffer pH 6.8 in concentration range of 2-30 µg/ml. In this concentration range good linearity was observed with the correlation coefficient (R^2) 0.9965. The graph obeyed the Beer-Lambert’s law in the selected concentration range.

Characterization of Samples

Fourier Transform Infrared Spectroscopy

All prepared solid dispersions were subjected to FTIR spectroscopic studies to determine drug-carrier interaction. FTIR spectra were recorded on samples prepared in potassium bromide (KBr) disks using Fourier Transform IR spectrophotometer (Perkin Elmer, RXI FTIR System). Samples were prepared in KBr disks by means of a hydrostatic press. The scanning range was 400 to 4000 cm$^{-1}$ and the resolution was 2 cm$^{-1}$.

Differential scanning calorimetric studies

Differential scanning calorimetry (DSC) measurements were carried out on a scanning calorimeter (DSC Q10 V9.0 Build 275, Universal V4.1D TA Instruments). The instrument was calibrated using indium as standard. Samples (5-10 mg) were placed in sealed aluminium pans and heated from 70°C to 250°C at a rate of 10°C/min under nitrogen atmosphere (60 ml/min), with empty pan as reference.

X-Ray Diffraction Studies

The powder x-ray diffraction (XRD) was performed by X’pert Pro with Spinner PW3064 using Ni-filtered, CuKα radiation, a voltage of 45 kV, and a current of 40 mA with a scintillation counter. The instrument was operated in the continuous scanning speed of 4°/min over a range of 5°C to 40°C.

Drug Content

Solid dispersions equivalent to 100 mg of Cefixime Trihydrate were weighed accurately and dissolved in a suitable quantity of methanolic phosphate buffer pH 6.8. The solutions were filtered and drug content was determined at 230 nm by UV spectrophotometer (Systronics Double Beam Spectrophotometer 2202) after suitable dilution. The percentage yield of each formulation was also calculated.

Saturation Solubility

To evaluate the increase in solubility of Cefixime Trihydrate, physical mixture and solid dispersions, saturation solubility measurements were conducted. The known excess (approximately 50 mg) of Cefixime Trihydrate was added to 100 mL of phosphate buffer (pH 6.8). Samples were rotated at 20 rpm in a water bath (37.0 ± 0.5°C) for 48 hours. The samples were then filtered, suitably diluted, and analyzed by UV spectrophotometer at 230 nm.
Dissolution Studies

The dissolution studies were performed using a US Pharmacopeia XXIV type II dissolution test apparatus. The samples equivalent to 100 mg Cefixime Trihydrate were placed in a dissolution vessel containing 900 mL of phosphate buffer (pH 6.8) maintained at 37.0 ± 0.5°C and stirred at 100 rpm. Samples were collected periodically and replaced with a fresh dissolution medium. After filtration, concentration of Cefixime Trihydrate was determined spectrophotometrically at 230 nm.

RESULT AND DISCUSSION

Table 2: FT-IR peaks of pure Cefixime Trihydrate, urea and physical mixture of Cefixime Trihydrate and urea.

<table>
<thead>
<tr>
<th>Description</th>
<th>Characterization (cm⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cefixime Trihydrate</td>
<td>3295.5, 2947.9, 1591.5, 1426.9 and 992.7.</td>
</tr>
<tr>
<td>Urea</td>
<td>3335.8, 1150.6, 787.1 and 556.9.</td>
</tr>
<tr>
<td>Cefixime Trihydrate and Urea</td>
<td>3335.8, 3295.5, 2947.9, 1591.5, 1426.9, 1150.6, 992.7, 787.1 and 556.9.</td>
</tr>
</tbody>
</table>

Differential Scanning Calorimetric Studies

Differential scanning calorimetry shows sharp endothermic fusion peak at 220.6°C, which is corresponding to the melting point of Cefixime Trihydrate [Figure 2].
X-Ray Diffraction Studies

The diffraction spectra of Cefixime Trihydrate and urea show numerous distinct peaks indicating that both are present in a highly crystalline state. The XRD pattern of solid dispersion of sample SD5 exhibits all the characteristic diffraction peaks of urea and crystalline Cefixime Trihydrate, but of lower intensity. This study reveals that some Cefixime Trihydrate still exists in the crystalline state in the solid dispersion.

Drug content and saturation solubility

The drug content and saturation solubility were determined and results were presented in Table 3.

Table 3: Drug content and saturation solubility of different formulations.

<table>
<thead>
<tr>
<th>Product Name</th>
<th>Drug Content (%)*</th>
<th>Saturation Solubility (µg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure Drug</td>
<td>--</td>
<td>65.86±(1.67)</td>
</tr>
<tr>
<td>SD1</td>
<td>94.82±(1.34)</td>
<td>134.74±(1.54)</td>
</tr>
<tr>
<td>SD2</td>
<td>96.34±(1.75)</td>
<td>143.25±(1.12)</td>
</tr>
<tr>
<td>SD3</td>
<td>93.76±(1.42)</td>
<td>144.76±(1.78)</td>
</tr>
<tr>
<td>SD4</td>
<td>95.27±(1.64)</td>
<td>154.47±(1.56)</td>
</tr>
<tr>
<td>SD5</td>
<td>98.85±(1.23)</td>
<td>161.64±(1.72)</td>
</tr>
<tr>
<td>SD6</td>
<td>95.86±(1.86)</td>
<td>163.56±(1.98)</td>
</tr>
<tr>
<td>SD7</td>
<td>94.76±(1.57)</td>
<td>164.57±(2.03)</td>
</tr>
<tr>
<td>PM5</td>
<td>95.65±(2.04)</td>
<td>113.87±(1.67)</td>
</tr>
</tbody>
</table>

*Values represent mean of three individual experiments. Data in parenthesis represent S.D.

Dissolution Studies

The dissolution rate of pure Cefixime Trihydrate was very poor and during 120 min a maximum about 32.45% of the drug was released. The reason for the poor dissolution of pure drug could be poor wettability and/or agglomeration or particles size. It was found that the dissolution rate of the drug increased according to increasing amount of hydrophilic carrier (urea) in physical mixture batches. This was due to the increase in solubility of drug by the presence of hydrophilic carrier surrounding the drug particles. Figure 3 shows comparative release profile of various solid dispersions of Cefixime Trihydrate with urea, physical mixture containing 1:5 ratio of drug: urea and pure drug. From release profile it can be seen that dissolution of Cefixime Trihydrate in solid dispersions increase with increase in urea up to 1:5 ratio of drug: urea. This increase in the dissolution rate may due to increase in drug wettability, solubilization of drug by carriers. After this particular ratio with further increase in the amount of urea, the dissolution rate was decreased. The decrease in dissolution may be due to the higher amounts of carrier takes time to dissolve. It was found that the drug release from physical mixture is greater than that of the pure drug and slower than that of solid dispersions. From the results, it was conclude that the dissolution rate of Cefixime Trihydrate increased by preparing solid dispersion with urea.
Figure 3: Comparative *in vitro* release profiles of Cefixime Trihydrate from solid dispersions and physical mixture containing urea.

ACKNOWLEDGEMENT

Authors would like to thank FDC Limited, Mumbai for the generous gift of Cefixime Trihydrate.

REFERENCES

12) Kushida I, Ichikawa M, Asakawa N. Improvement of dissolution and oral absorption of ER-34122, a

Author Information:
S. C. ARORA is working as professor at R.K.S.D. College of Pharmacy, Kaithal, Haryana, India

Article History:-----------------------
Date of Submission: 23-02-10
Date of Acceptance: 24-04-10
Conflict of Interest: NIL
Source of Support: NONE