Reach Us +44-7480-022449

Abstract

ADMET, Docking studies & binding energy calculations of some Novel ACE - inhibitors for the treatment of Diabetic Nephropathy

Diabetic Nephropathy (DN) is one of the major complications of diabetes mellitus, representing the leading of cause of chronic renal disease and a major cause of morbidity and mortality in both type 1 and type 2 diabetic patients. The Renin-Angiotensin-Aldosterone System (RAAS) has been implicated in the pathophysiology of DN, and suggests a therapeutic target for blocking this system. Therefore, inhibition of RAAS plays a crucial role in the treatment of DN and therapeutic intervention mostly involves administration of angiotensin converting enzyme (ACE) inhibitors and angiotensin AT1 receptor blockers. In this current study, we have used computational methods to design 37 novel ACE-inhibitors and evaluated them for the interaction with the enzyme ACE through insilico analysis. The obtained results were compared with the standard drug enalapril to find out the potential inhibitors. Here we report that ligand 4 exhibited strongest inhibitory activity among all. All the analogs are also screened for their ADME & Toxicity profiles using insilico tools and ligand 9 is having better binding affinity next to ligand 4, and also having better ADMET profile when compared to that of ligand 4. Post docking calculations were also performed for the docked complexes in order to identify the individual ligand binding energies by employing Multi-Ligand Bimolecular Association with Energetics (Embrace).


Author(s): Gade Deepak Reddy , K N V Pavan Kumar, N Duganath, Raavi Divya , Kancharla Amitha

Abstract | Full-Text | PDF

Share this  Facebook  Twitter  LinkedIn  Google+
30+ Million Readerbase
Flyer image
Abstracted/Indexed in
  • Chemical Abstracts Service (CAS)
  • Index Copernicus
  • Google Scholar
  • Genamics JournalSeek
  • China National Knowledge Infrastructure (CNKI)
  • CiteFactor
  • Scimago
  • Directory of Research Journal Indexing (DRJI)
  • WorldCat
  • Publons
  • MIAR
  • ResearchGate
  • University Grants Commission
  • Secret Search Engine Labs